This is how wo do it ot Tatsfield Primary School

A guide to written calculations in mathematics

Contents

Introduction

- "They didn't do it like that in my day!" p. 1
Addition
- Addition using an informal method p. 3
- Compensating p. 5
- Expanded method p. 6
- Standard method p. 8
Subtraction
- Subtraction on a number line p. 10
- Working towards a standard method - decomposition p. 12
- Standard method - decomposition p. 14
Multiplication
- Multiplication on a number line p. 16
- Grid multiplication - TU x U p. 18
- Grid multiplication - TU x TU p. 20
- Grid method, expanded method and compact method - TU x U p. 22
- Grid method, expanded method and compact method - TU x TU p. 24
Division
- Division on a number line p. 26
- Division by chunking p. 28
- Short compact division p. 30
Calculations in context p. 32
Improving your own Skills p. 34
Place value cards p. 36

"They didn't do it like that in my day!"

Do your children ask for help with their maths homework and start talking in a foreign language, using words like 'partitioning', 'chunking', 'grid multiplication'.

If so, you may feel the need for some translation. This booklet is designed to explain the methods used to teach calculation in Tatsfield Primary School.

Which is more important:

nental calculation.د

This will depend on the numbers involved and the individual child.
When faced with a calculation, no matter how large or difficult the numbers may appear to be, all children should ask

When do children need to start recording?

The following table shows how some sort of recording is relevant throughout the primary years with mental strategies playing an important role throughout.

Reception	Year 1	Year 2	Year 3	Year 4	Year 5	Year6
Making a record of a calculation						
\longleftarrow-Explaining a mental strategy \longrightarrow						
\longleftarrow - Developing written methods \rightarrow						
\longleftarrow Formal written methods \rightarrow						

It is important to encourage children to look first at the problem and then get them to decide which, is the best method to choose - pictures, mental calculation with or without jottings, structured recording or calculator.

Children attempting to use formal written methods without a secure understanding will try to remember rules, which may result in unnecessary and mistaken applications of a standard method.

Some of the methods explained in this booklet involve 'partitioning' and a set of place value cards are attached which can be pasted onto card and cut out (your child will show you how to use them).

Using an informal method.

ADDITION

$T U+T U$
$86+57$

Start at 86 (the larger number).
 Partition the smaller number 57 into tens and units and count on the multiples of 10 first and then the units.

1) $86+50=136$
2) $136+7=143$
$86+57=143$

ADDITION Add too much and then subtract (compensate)

HTU + TU
$754+96$

HTU + TU
 $754+96$

Start with the larger number 754. Add on 100 and then subtract 4.

$754+96=850$

ADDITION

 Expanded method: adding the least significant digits first
625 + 148

Why add the units (least significant digits) first?

I know that I can add numbers in any order and the total will be the same. My teacher has told me that I need to practise adding the units first. The next method I will learn works this way. I must remember to line the numbers up in the correct columns.

$\mathrm{HTU}+\mathrm{HTU}$
 $625+148$

Add least significant digits first:
(in this example, units)

625	
148	
13	
60	
700	
773	

$625+148=773$

ADDITION

Using a standard method

HTU + HTU
$587+475$

$500+400=900$ then +100 which totals 1000 . Place this in the thousands column.

SUBTRACTION

Find the difference

> TU - TU
> $84-56$
How do you decide whether to count on or count back?

TU - TU

84-56

$$
84-56=28
$$

SUBTRACTION

Working towards a standard method (decomposition)

HTU - TU
154-37

Why do you need to rearrange the numbers $50+4$ and rewrite them as 40 + $14 ?$

The whole number is 154 . I only have 4 units so I don't have enough units to subtract 7 yet. For this method I can exchange one ten from the tens column for ten ones in the units column.

$154-37=117$

SUBTRACTION

Standard method (decomposition)

HTU - HTU
 754-286

$754-286=468$

MULTIPLICATION

Introducing multiplication on a number line

TU X U
14×5

How is multiplication the same as repeated addition?

The number line helps me see each group of 5 clearly.
If I add 5 fourteen times, that is the same as 14 multiplied by 5 (14×5, 14 lots of 5). Or I can make 14 individual jumps of 5 along the number line.
1 jump of 5×10 and 1 jump of 5×4. Table facts will help me do this more quickly.

TU x U
 14×5

The number line shows 14 multiplied by 5 (14 jumps of 5 on the number line).

Multiplication is repeated addition.

Using table facts to make bigger jumps is more efficient.
$14 \times 5=70$

MULTIPLICATION

Expanded method and Compact method

TU X U
23×8
What are the brackets for in the expanded method?

They remind me which numbers I am multiplying.
I also have to remember to line the numbers up as hundreds, tens and units.

I multiply the units first so I can carry forward any tens I need to!
This method is very quick but I have to remember to add on any numbers I carry forward.

EXPANDED METHOD

COMPACT METHOD

(short multiplication)

| $\frac{8}{23}$ |
| :---: | :---: |
| $\frac{184}{2}$ |\quad| 2 is the 2 tens |
| :---: |
| that need to be |
| carried forward |
| and added to the |
| next part product. |

8 lots of 20
equals $160\left(2^{\text {nd }}\right.$ part product), plus the 2 tens equals 180 .

The digits are put in the correct columns, to give the answer 184.
$23 \times 8=184$

MULTIPLICATION

TU X TU 46×32

> I recognise the long multiplication method. How do you multiply 46 by 30?

PARTITIONING METHOD TU X TU

Factorise to make
$(46 \times 3) \times 10=1380$

$$
1380+92=1472
$$

COMPACT METHOD

(long multiplication)

$46 \times 32=1472$

DIVISION

Introducing division on a number line

TU \div U
$27 \div 3$

What has subtraction got to do with division?

$\mathrm{TU} \div \mathrm{U}$
$27 \div 3$

$$
\begin{gathered}
\begin{array}{c}
\text { Counting back in groups of } \\
3 \text { on a number line. }
\end{array} \quad \begin{array}{c}
9 \text { groups of } 3 \text { on } \\
\text { a number line. }
\end{array} \\
\hline
\end{gathered}
$$

START
 HERE

There are 9 groups of 3 in 27

$$
27 \div 3=9
$$

SHORT COMPACT DIVISION

LONG COMPACT DIVISION

It is advisable to teach long division first as it is easier to move from long division to the short division method.

When teaching long division, it is wise to start by using a one digit divisor.
$432 \div 15$ becomes

Answer: 28.8
$\mathrm{HTU} \div \mathrm{U}$
$471 \div 3$

Q: What is the largest number of
$471 \div 3=157$

CALCULATIONS IN CONTEXT

Children must always answer these questions when starting to solve a problem:
All the methods in this booklet support children in using their mental and written skills to solve calculations. Children need to be encouraged to use the method that they understand and can use confidently.

It is important that children are able to choose the most appropriate method for the calculation.

4003-3998

These numbers are very close together and so counting up on a number line (actual or imagined) would be the most efficient method.

$200 \div 4$

Dividing by 4 is the same as halving and halving again. As it is easy to halve 200 and easy to halve 100, this would be the most efficient method.

Using and applying appropriate skills is very important, when calculations are needed to solve a problem.

4 C.DS at $£ 2.99$ - how much altogether?

$£ 2.99$ is almost $£ 3.00$ and so round up, multiply, then adjust:
$4 \times £ 3.00=£ 12.00$
£12.00-4p = £11.96

Improving your own skills

Many adults think that they aren't very good at Maths. If you think it's time that you did something about your own Maths, there are lots of sources of help.

- There are national telephone and internet helplines available to help find an appropriate course.

Learndirect:	$\frac{\text { www.learndirect.co.uk }}{}$
Niace: Promoting adult learning:	http://www.niace.org.uk/
BBC Skillswise:	$\underline{w w w . b b c . c o . u k / s k i l l s w i s e ~}$

- There are several websites designed to help students of all ages find out about different topics in Maths:
- The BBC site (www.bbc.co.uk) has excellent sections for revision at KS2 and KS3 (www.bbc.co.uk/revisewise), and the GCSE and Skillswise sections also give worked examples of mathematical problems'- particularly useful when your child doesn't understand her homework and you don't either......

Place Value Cards

